
i

t

w

+

!

l/Y- _+,/- _: lA-f

Toward the Efficient Implementation
of

Expert Systems in Ada
(MA_A-C_-I88942) TQWA_n THE EFFICIrNT N91-32839
I_PLLMCNTATION OF EXPERT SYSTEMS IN Ada

(Research Inst. for Advanced Computer

Science) 15 p CSCL 09B Unclas
G3/61 0046432

S. Daniel Lee

Inference Corporation

December 1990

'I
m Cooperative Agreement NCC 9-16

Research Activity No. SE. 19

NASA JohnsonSpace Center
Information Systems Directorate
Information Technology Division

+

r

-=

=

©

Research Institute for Computing and/nformation Systems
University of Houston - Clear Lake

T.E.C.H.N.I.C.A .L R.E.P.O.R.T

I

I

!

R

LJ

L:II

7

The
RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space _ =

Center and local industry to actively support research in the computing and
informatlon sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for J$C's main missions, including _4:

administrative, engineering and science responsibilities. JSC agreedand entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two insti_tudons to conduct ihe r_ch. -: ==_-- __
The mission of RICIS is to conduct, coordinate and disseminate research on i_

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of J!
faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" c0ncept, UH-Clear :=: _ _ z

Lake establishes relationships with Other Universities and research organizations, = : : i_
having common research inter_,, _ provide additi0na[_r_e_ of expertise io _=

conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and _ _: :
research objectives to advance knowledge in the computing and information = _]_

sciences. Vgorl_ingjointly with NASA/JSC, RICiS advises on research n_, _=

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC. = _:......... _

w

W

m

=

_=

w

w

= ,.

Z

i

w

w

m
I

v

To ward the Efficient Implementation
of

Expert Systems in A da

i

m

II

Im

m
I

Ill

g

I

I

Im

I

B

I

ii

m_D
m

II

!

mm

m

--Z_ t

Preface

w

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay

served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

w

h

i

i

i

i

mm

m--

!6

i

i

L_

I

i

i

U

b

U

U

Toward the Efficient Implementation of Expert Systems in Ada'

w

:£A

w

S. Daniel Lee

Inference Corporation
550 North Continental Boulevard

El Segundo, California 90245

lee@inference.corn

J

W

E_

i

m
w

J

W

w

Abstract

Due to the Ada mandate of such government agencies

as DoD, NASA and FAA, interest in deploying expert

systems in Ada has increased. Recently, a couple of

Ada-based expert system tools have been developed.

According to recent benchmark reports, these tools do

not perform as well as similar tools written in

C. While poorly implemented Ada compilers also con-

tribute to the poor benchmark result, some fundamen-

tal problems of the Ada language itself have been un-

covered. In this paper, we describe Ada language

issues encountered during the development of ART-

Ada, an expert system tool for Ada deployment.

ART-Ada is being used to implement several expert

system applications for the Space Station Freedom
and the U.S. Air Force.

1. Introduction

As the government mandate to standardize on Ada

as the language for software development is being ac-

tively enforced by government agencies, including

DoD, NASA and FAA, interest in making expert sys-

tems technology readily available in Ada environ-

ments has increased. An example project that ex-

hibits the need for expert systems in Ads is NASA's

Space Station Freedom. Another large-scale applics-

tion of Ada-based expert systems is the Pilot's As-

sociate (PA) project for military combat aircraft [10].

Recently, several Ada-bssed expert system tools

have been developed to address this need of govern-

ment agencies. Commercial off-the-shelf (COTS)
tools include:

• ART-Ada [19], [20], [21],

• CHRONOS [22], and

• CLIPS/Ada [1], [2], [28].

There are several other experimental systems

reported mainly in the proceedings of the annual con-

ference on artificial intelligence & Ada (A[DA),

1987-1989 [26], [20], [9], [16], [8], [18].

Since ART-Ada and CLIPS/Ada are modeled after

C-based tools, ART-IM and CLIPS respectively, they

are based on the same algorithm as that of C-based

tool_. According to recent benchmark

report, [28], [17], Ada-based tools do not perform as
well as Cvbased ones. While poorly implemented Ada

compilers also contribute to the poor benchmark

result, some fundamental problems of the Ada lan-

guage itself have been uncovered.

In this paper, we describe Ada language issues en-

countered during the development of ART-Ada, an

expert system tool for Ada deployment [19], [20], [21].

ART-Ada allows applications of a C-based expert sys-

tem tool called ART-IM to be deployed in various
Ada environments.

$

This paper will appear in the proceedings of TRI-Ada, Btltimore, Mauyland, December 1990.

Ada Ir_i_ii_i_i!liii!illI _

Packages / _====_.1_ / # _L====U___/
A Ii i Executablepp cat on

/ ART-Ada ^.,.. / Ada Application
); Development

,- ,--,,,,w,, System
Environment n,'_'_'_,... / Compilation ::

Application _ __Knowledge i
Base

ART-Ada
Runtime
Kernel

am

lib

tl

lib

m

lib

im

III

I

Figure 1-1: OverallArchitectureof ART-Ada

2. ART-Ada

Inference has been involved with Ada-based expert

systems research since 1986. Initial work zentered

around a specification for an Ada-based expert system

tool [11]. In 1988, the ART-Ada Design Project was

initiated to design and implement an Ada, based ex-

pert system tool [13], [19], [20]. At the end of 1989,
ART-Ada was released to beta sites ss A.RT-Ada 2.0

Beta on the VAX/VMS and Sun/Unix platforms [14].

In 1990, eight beta sites, four NASA sites and four

Air Force sites, have been evaluating ART-Ada 2.0 by

developing expert systems and deploying them in Ada
environments. = : _ : : .

Inference Corporation developed an expert system

tool called ART (Automated Reasoning Tool) that has

been commercially available for several years [12].

ART is written in Common Lisp and it supports

various reasoning facilities such as rules, objects,

truth maintenance, hypothetical reasoning and object-

oriented programming. In 1988, Inference introduced

another expert system tool called ART-IM

(Automated Reasoning Tool for Information .Manage-

ment), which is also commercially available [15].

ART-IM is written in C and it supports a major sub-

set of ART's reasoning facilities including rules, ob-

jects, truth maintenance and object-oriented program-

ming. ART-IM supports deployment of applications

in C using a C deployment compiler that converts an

application into C data structure definitions in the

form of either C source code or object code. ART-

IM's interactive development environment includes a

graphical user interface that allows browsing and

debugging of the knowledge base and an integrated

editor that offers incremental compilation. ART-LM

is available for MVS, V'MS, Unix, MS-DOS, and OS/2

envlronments.. _ :.......

Our approach in designing an Aria-based expert sys-

tem tool was to use the architecture of proven expert

system tools: ART and ART-IM. Both ART and

ART'IM have been successfully used to develop many

applications which are in daily use today [4], [5],[7],
[23], [24], [25], [27]. ART-IM was selected a_ a

baseline system because C is much closer to Ada than

Lisp. While ART-IM's inference engine was

g

MM

I

U

g

l

J

m

B

= =

L :

u__

W

z

W

= =

reimplemented in Ada, ART-IM's front-end (its

parser/analyzer and graphical user interface) was

reused as the ART-Ada development environment.

The ART-IM kernel was enhanced to generate Ada
source code that would be used to initialize Ada data

structures equivalent to ART-IM's internal C data

structures, and also to interface with user-written Ada

code. This approach allows the user to take full ad-

vantage of an interactive development environment

developed originally for ART-IM. Once development

is complete, an application is automatically converted

to Ada source code. It is, then, compiled and linked

with the Ada runtime kernel, which is an Aria-based

inference engine.

The overall architecture of ART-Ada is depicted in

figure 1-1. The knowledge base is developed and

debugged using an interactive user interface that sup-

ports three main features; a command loop similar to

the Lisp eval loop, a graphical user interface for

knowledge base browsing and debugging, and an in-

tegrated editor for the incremental compilation of the

knowledge base. Any user-written Ada code can be

integrated into the knowledge base by either calling it

from a rule or invoking it as a method for object-

oriented programming.

Once the knowledge base is fully debugged, it can be

automatically converted into an Ada package for

deployment. The ART-Ada runtime kernel is an Ada

library, which is in essence an Aria-based inference en-

gine. An Ada executable image is produced when the

machine-generated Aria code and any user-written

Ada code, if any, are compiled and linked with the

Ada library.

While Ada compilers are improving, they stillhave

not reached the maturity of C compilers. In fact,be-

cause of numerous bugs found inthe Ad a compilers
used for thisproject,we could not make some of the

obvious performance optimizations that could have

made ART-Ada fasterand smaller. It has alsobeen

observed that both the :speed and size of ART-Acla

vary up to 300/0depending on which Ada compiler is

used. A recent paper discusses the key technical

issues involved in producing high-quality Ada

compilers[8]. As Ada compiler technology advances,

ART-Ada's performance willimprove.

In addition to the compiler problems, we also dis-

covered some fundamental issueswith the Ada Inn-

guage itself that also affected the performance of

ART-Ada. Various Ada language issues are being
studied by the Ada 9X Project team. We believe that

the issues discussed in this paper should also be con-

sidered for the Ada 9X standard. In fact, they have

been presented at the Ada 9X meeting held in

Washington, D.C. in March, 1990.

3. Compiler Problems

Several reports from Ada compiler vendors indicate

that some Ada programs might run faster than equiv-

alent C programs. Contrary to these claims, our Ada

implementation is slower and larger than the C im-

plementation. Although we believe the main reason is

the restrictive nature of the Ada language itself, Ada

compiler bugs also contribute to the poor perfor-

mance. We used the Verdix Ada compiler on a Sun

workstation and the DEC Ada compiler on a VAXzta-

tion running the V'MS operating system.

• The bit-level representation clause or the

pragma pack can be used to reduce the

size of data structures. For example, a

boolean field in a record, which is nor-

mally a byte, can be reduced to a single
bit. These features did not work in one of

the compilers we used; an illegal instruc-

tion error occurred when the single-bit

boolean field was referenced. This is prob-

ably a bug in the code generator. Due to

this bug, no attempt was made to reduce

the size of ART-Ada by using these fea-
tures.

In ART-Ada, we reuse several Booch

components [3]. These software com-
ponents are used to implement data struc-

tures (e.g. linked lists and strings) and

other utilities (e.g. quick sort). Most

Booch components are implemented as

generic- packages using object-oriented

design methodology. This means that a

large number of subprograms are provided

in each generic package, which may be in-

stantiated multiple times. Unfortunately,

one of the compilers does not support a

feature called selective linking _ a linker

feature that makes it possible to include

only those subprograms actually used in

the program. The underlying mechanism

2

used by the compiler is the Unix linker

(ld), which does not support selective link-

ing. As a result, whenever a generic pack-

age is instantiated and included using the

with statement, all subprograms in the

package are always included in the ex-

ecutable image regardless of their actual

usage. This increases the size of the ex-

ecutable image.

We could not use an optimizer in one of

the compilers because it generated bad
code.

4. Dynamic Memory Allocation

Due to the dynamic nature of expert systems, it is

necessary to allocate memory dynamically at runtime

in ART-Ada. In Ada, new is used to allocate memory

and unchecked deaUocation, to deallocate it. Our

experiment shows that the average overhead of new in

the Verdix compiler is about eighteen bytes, i.e. every

time new is called, an extra eighteen bytes are wasted.

This result is obtained by using a program that al-

locates the same data structure multiple times using

new and measuring its process size with the Unix

command "ps aux". We repeated the same experi-

ment using several data structures of different size.

According to Verdix, new eventually calls maUoe. We

tried similar experiments using the Sun C compiler.

The average overhead of malloe was about eight

bytes, which was significantly smaller than that of

Ada. It is not clear why it is necessary to add extra

ten bytes to every malloc. The only information

needed to call fret is the size of the memory, which

can be obtained from the data type used to instan-

tiate .the generic procedure unehecked dealloeation.

The exceptions are unconstrained arrays and variant

records w_-ose size can-vary. For these data types, it

would be necessary to add four bytes to store the size

information. The actual measurement results are

summarized in Tables I-I and I-2 in Appendix I. Units

in these tables are bytes. The C and Ada program

used are shown in the Appendix II.

The real problem with this overhead is that in ART-

Ada new is called very frequently to allocate relatively

small blocks while in ART-IM (Inference's C-based ex-

pert system tool), malloc is called only to allocate

large blocks (e.g. 100 Kbytes). In order to achieve

maximum time and space efficiency, ART-I:M has

been optimized in ways that are not portable to Ada.

For example, the type cast feature of the C language

has I_een used both to optimize data structures and to

implement an internal memory manager. ART-h'M's

memory manager maintains its own free lists and

handles all allocation and deallocation requests from

the ._RT-I:M kernel; it allocates large blocks of

memory from the system, and then fulfills individual

(relatively small) requests for storage from the large

blocks. As storage is released, it is added to inter-

nally maintained free lists; the blocks themselves are

never released back to the system. There are several

advantages to this approach:

The free space is managed in a common

pool by a single facility and is available

for allocation of arbitrary data types by

using the type cast capability in C.

• The overhead of this approach consistsof

a fixed Overhead and a very small in-

cremental overhead for each large block.

The fixedoverhead isI Kbyte. Internally,

all small blocks freed from ART-IM are

maintained in free lists. There are 256

free lists, each of which holds memory
blocks with different sizes. All blocks in a

free list are of the same size. The head of

these linked lists consumes 4 bytes. There-
fore, the total overhead to maintain these

linked lists is only 1 Kbytes. The sub-

sequent items in these linked lists store the

next pointer within the small block itself,

which results in absolutely no overhead.

When a large block (e.g. i00 Kbytes) is al-

located from the operating system, it is
maintained in a linked list. Each item in

this linked list consumes 12 bytes, and

therefore the overhead is only 12 bytes per

every i00 Kb-Yies, which is negligible.

• It isfasterthan using system routinesfor

small requests.

The success of ART-IM's use of type casting relies

on other features of the C language definition: there is

a direct; correspondence between addresses and pointer

types; the mapping between data types, including

structures and arrays, is well defined and straightfor-

ward. Ada does provide a facility for converting be-

tween data types, although this feature has intention-

S

mm

g

g

B

I

U

W

m

g

I

W

m

g

m

L_
w

w

w

ally been made difficult to use. In order to convert

from one data type to another, the generic function
unchecked conversion must be instaatiated ['or each

conversion required. The implementation of a type

cast capability in Ada is insufficient to implement the
ART-LM features described above, however. No cor-

respondence is guaranteed between the type

SYSTEM.ADDRESS and Ada access types. Indeed,

on some implementations the underlying represen-

tation is different for addresses and access types. The

constraint checking requirements of Ada require that

the representation of many objects include descriptor

information. The format of these descriptors is not

defined by the language. Hence, it is impossible to

implement the ART-IM style memory manager in Ada

using unchecked_ conversion.

Another related problem was how to port C code
similar to the one shown below to Ada. In this ex-

ample, the & operator is used to resolve the pointer

reference at compile time through the static array in-

itialization. C code similar to this example is used to
convert the ART-IM internal data structures into C

source code.

struct foo

long *bar_p_r;
);

struc5 bar (

struct bar barl[10] = {: ... >;

s_ruct foo fool[lO] = (

{_barl [5]>, /* fool[O] points to barl[6] */

>;

There are two problems in implementing this in

Ada:

As mentioned earlier,

unchecked conversion is not as flexible

as the & operator.

-0 Even if it is possible to emulate the &

operat0rwith unchecked conversion, it is

not possible to free these data structures

using unchecked_deallocation because

they are not created dynamically through
new.

: =

As a consequence, we had to create all data struc-

tures dynamically using new. To resolve the pointer

references, we used the following method:

1. When a data structure is created, its

pointer value returned by new is stored in

a temporary pointer array.

. When a data structure has a pointer refer-

ence, the index of the temporary pointer

array and the data type of both referencer

and referencee are stored in a cross refer-

ence table for later processing.

. After all data structuresare created, the

crossreferencetableisprocessed. The ac-

tual pointer value is fetched from the

referenceepointerarray and stored in the

referencer.

. After all pointer references are resolved,

the temporary pointer arrays and the cross
reference table are freed.

The disadvantage of this approach is that large

blocks of memory must be allocated and freed at run-

time. The size of the cross reference table could be

quite large. In fact, we could not use a 16-bit integer

as an array index because it overflowed on large ap-

plications.

The problems of dynamic memory allocationin Ada

can be summarized as follows:

The direct use of new and

unchecked deallocation is the only

dynamic memory management method

available in Ada. The problem with this
method is that new incurs a fixed over-

head associated with each call and it is

called very frequently to allocate a rela-

tively small block for an individual data

structure. It results in a performance

penalty in size and the slower execution

speed. This is also aggravated by the poor

implementation of new in the Ada com-

piler.

• The existing Ads features, new,

uncheckeddeaUocation, and

unchecked_conversion, are too restrictive

and totally inadequate for a complex sys-

tem that requires efficient memory

management. More flexible features (per-

haps in addition to the existing ones)

should be provided. This is particularly

important in embedded system environ-

ments that impose a severe restriction on

the memory size.

5. Other Language Issues Related
to Performance

The issue of dynamic memory management i_, we

believe, by far the dominant factor for the overhead

in ART-Ada performance compared with _hat of

ART-IM. Other issues in the Ada language that also
contribute to the overhead are summarized below:.

* ART-IM has an interpreter (similar to a

Lisp interpreter) that calls a C function

using a C function pointer. To emulate

ART-IM's function call mechanism, the

Ada code generator automatically

generates Ada source code for a procedure

called FUNCALL that has a large case
statement. This case statement contains

all the Ada subprograrns that are called

from an ART-Ada application. Each sub-

program is assigned with an ID number.

To call an Ada subprogram, the procedure

FUNCALL is called with a subprogram ID

number. While it may cause maintenance

problems, the use of function pointers can

provide better performance than the use of
the Ada case statement.

• In C, bit operations (e.g. bitwise exclusive

OR, bitwise shift operations, etc.) are of-

ten used to implement efficient hashing al-

gorithms. These operations are directly

applied to an integer, a float or a pointer

value to produce a hash code. In Ada, bit

operations are provided through logical

operations on packed arrays of booleans.

These operations, however, cannot be ap-

plied directly to a value of another data

type (e.g. integer or float).

• Ada strings are stored in a record with a

length field in ART-Ada. A generic string

package from the Booth component

library is used for internal string storage

and manipulation [3]. Since
STANDARD.STRING is used for all

public interfaces, a Booch string is con-
verted to STANDARD.STRING or vice

versa. It would be more efficient if the

standard Ada string is one with a length

specification that can be manipulated

easily using a set of predefined standard

string operations.

6. Portability

Although Ada is quite portable (probably more port-

able than C), Ada is not 100% portable.

* Since the development environment of

ART-Ada is written mostly in C, an Ada

binding is developed to interface it w_th

Ada. We found it extremely hard (if not

impossible) to write portable binding code

for multiple compilers running on multiple

platforms. Pragmas for importing and ex-

porting subprograms are not portable.

The parameter passing mechanism be-
tween Ada and C is not standardized. Be-

cause of this, a mechanism for string con-

version between Ada and C is not port-

able.

The standard syntax for most pragmas are

not defined in the Ada Language Reference

Manual. Consequently, the pragma syntax

often varies among different compilers.

No standards exist for INTEGER,

FLOAT, LONG_ INTEGER,

LONG_ FLOAT, SMALL_ INTEGER,

SMALL_FLOAT, etc. ART-Ada sup-

ports 32-bit integers and 64-bit floats in-

ternaily. We had to define

INTEGER_TYPE and FLOAT_TYPE

as subtypes of whatever a compiler defines

as such. For example, in the Verdix com-

pilerSTANDARD.FLOAT is64-bit while

in the DEC compiler

STANDARD.LONGFLOAT is. It might
be better to define our own INTEGER and

FLOAT types. It is slightly more con-

I

i
i

U

m

m
I

g

p
g

I

w

U

I

m

w

I

g

= =

U -

w

W

w

L--

I

W

W

W

m

i

w

,.__,

venient, however, to use existing data

types defined in the package STANDARD

because operations on numeric types are

predefined in the package STANDARD.

Since the math library, which is part of

the standard C language, is not part of

standard Ada, it is hard to write portable
Ada code that uses math functions.

The representation clause is not portable

because different Ada compilers and

hardware platforms may use a different

memory boundary.

Some code is simply not portable. For ex-

ample, in ART-Ada, a public function is

provided to invoke the operating system

commands. Obviously, the implemen-

tation of this function is not portable

among different operating systems.

Different Ada compilers or even different

versions of the same compiler often have a

different set of bugs. It may be necessary

to maintain multiple versions of the same
code to work around them.

In C, conditional compilation facilitated by

preprocessor directives (e.g #define and #if) allows

maintaining a single source file for multiple platforms.

In Ada, no such facility exists, and multiple files may

have to be maintained for multiple platforms. Since

we had to maintain ART-Ads on multiple platforms

(possibly on multiple compilers on the same

hardware), we did not want to maintain multiple files.
At first, we were going to write a preprocessor in Ada

or in C. After some experiments, however, we found

the C preprocessor (cpp) on a Sun quite adequate for

preproeessing the Ada master file with cpp macros

embedded (e.g. _if, _endif, etc.).

The master file includes Ada code and appropriate

cpp commands for multiple platforms :

#if VERDIX

subtype FLOAT_TYPE is FLOAT;

#endif

#if VMS

subtype FLOAT_TYPE is LONG_FLOAT,
#sndif

We define app as follows:

/lib/cpp $1 $2 $3 $4 $5 $8 $7 [grep -v "_#"

Then, we execute the following commands:

app -DVEEDIX foo.a.master > foo.a

app -DVMS foo.a.mast,r > foo.ada

The first one creates a file for the Verdix compiler

on a Sun, and the second, for the DEC Ada compiler

on a VAX/VMS.

The problem with this is that the Ada master file is

still not a compilable Ada file and has to be

preprocessed manually. We also have to maintain

multiple Ada files generated by cpp. It would be bet-

ter if the preprocessor is part of the standard Ada

language so that only a single source file is main-

tained and processed directly by the Ada compiler.

7. Acknowledgments

I wish to acknowledge the guidance and support of

Chris Cu!bert and Bob Savely of NASA Johnson

Space Center, Greg Swietek of NASA Headquarters,

and Captain Mark Gersh of the U.S. Air Force. Brad

Allen, Mark Auburn, and Mike Stoler of Inference

Corporation contributed to the project. Don

Pilipovich and Mark Wright who were formerly with

Inference Corporation also contributed to the project.

I also thank two anonymous referees for valuable
comments.

References

I. BarriosTechnology, Inc. CLIPS/Ada Advanced

Programming Guide. Barrios Technology, Inc., 1989.

2. Barrios Technology, Inc. CLIPS/Aria Architec-

ture Manual. Barrios Technology, Inc., 1989.

3. Booch, G. Software Component8 With Ada.

Benjamin/Cummings Publishing, 1987.

4. Bunney, W. et. al. Ford Motor Company's Expert

System for Claims Authorization and Processing, ES-

CAPE. Proceedings of the Conference on Innovative

Applications of Artificial Intelligence, A.AAI, 1990.

5. Dzierzanowski, J.M. et. al. The Authorizer's As-

sistant: A Knowledge-based Credit Authorizatlon Sys-

tem for American Express. Proceedings of the Con-

ference on Innovative Applications of Artificial Intel-

ligence, AAAI, 1989.

6. Filman, R.E., Bock, C., and Feldman, R. Compil-

ing Knowledge-Based Systems Specified in KEE to

.&DA. Tech. Rept. Final Report, NASA Contract

NAS8-38036, IntelliCorp Inc., August, 1989.

7. Friel, P.C, Mayer, R.J., Lockledge, J.C. COOL-

SYS: A Cooling Systems Design Assistant. Proceed-

ings of the Conference on Innovative Applications of

.Artificial Intelligence, AAAI, 1989.

8. Ganapathi, M., Mendal, G.O. "Issues in Ads

Compiler Technology". Computer PP, 2 (February

1989).

9. Hirshfield, S.H., Slack, T.B. ERS: An Expert Sys-

tern Shell Designed and Implemented in Ads.

Proceedings of the Conference on Artificial Intel-

ligence &Ada, Department of Computer Science,

George Mason University, No_ember, 1988.

10. Hugh, D.A. "The Future of Flying'. A/Expert

8, 1 (January 1988).

11. Inference Corporation. Ads-ART, Specification

for an Ada-based State-of-the-Art Expert System

Construction Capability. Inference Corporation,

August, 1987.

12. Inference Corporation. ART Vereion 8._ Re.ter-

ence Manual. Inference Corporation, 1988.

13. Inference Corporation. ART/Ads Design Project

- Phase I, Final Report. Inference Corporation,

March, 1989.

14. inference Corporation. ART-Ada/VTt4S P.O Beta

Reference Manual. Inference Corporation, 1989.

15. Inference Corporation. AR'-I"-IM/VMS _.0 Beta

Reference Manual. Inference Corporation, 1989.

18. Jaworski, A., LaVallee, D., Zoch, D. A Lisl>-Ada

Connection for Expert System Development. Proceed-

ings of the Third Annual Conference on Artificial In-

telligence &Ada, Department of Computer Science,

George Mason University, October, 1987.

17. Knackstedt, R.P., Badum, C.M. Personal com-
munication on their internal benchmarks on ART-Ada

vs. ART-IM and CLIPS/Aria vs. CLIPS. McDonnell

Douglas Space Systems Company, June, 1990.

18. Labhart, J., Williams, K. Ads MeriTooh A

Software Tool for Knowledge-Based Systems.

Proceedings of the Conference on Artificial Intel-

ligence &Ada, Department of Computer Science,

George Mason University, November, 1989.

19. Lee, S.D., Allen, B.P. Deploying Expert Systems

in Ada. Proceedings of the TRI-Ada Conference,
ACM, October, 1989.

20. Lee, S.D., Allen, B.P. ART-Ads Design Project -

Phase II, Final Report. Inference Corporation,

February, 1990.

21. Lee, S.D., Allen, B.P. ART-Ada: .Aa_Ads-Based

Expert System Tool. Proceedings of the Space Opera-

tions, Applications and Research Symposium (SOAR),
NASA, June, 1990.

22. Martin, J.L. "A Development Tool for Real-

Time Expert Systems". Al_ynew8 3, 1 (March 1989).

23. Nakashima, Y, Baba, T. OHCS: Hydraulic Cir-

cuit Design Assistant_ Proceedings of the Conference

on Innovative Applications of .Artificial Intelligence,

AAAI, 1989.

24. O'Brien, J. et. al. The Ford Motor Company

Direct Labor Management System. Proceedings of the

Conference on Innovative Applications of Artificial In-

telligence, AAAI, 1989.

25. Silverman, S. et. al. A Real-Time Alarm
Analysis Advisor. Proceedings of the Conference on

Innovative Applications of Artificial Intelligence,

AAAI, 1990.

28. Stockman, S.P. ABLE: An Ada-Based Black-

board System. Proceedings of the Conference on Ar-

tificial Intelligence &Ada, Department of Computer

Science, George Mason University, November, 1988.

27. Vora, L. et. al. TIES: An Engineering Design

Methodology and System. Proceedings of the Con-

ference on Innovative Applications of Artificial Intel-

ligence, AAA], 1990.

28. White, W.A. CLIPS/Ada: an Ads-Based Tool

for Building Expert Systems. Proceedings of the

CLIPS Conference, NASA Johnson Space Center,

August, 1990.

29. Wright, P.A. Ada Real-Time Inference Engine

(ARTIE). Proceedings of the Conference on Artificial

Intelligence & Ads, Department of Computer Science,

George Mason University, November, 1989.

i

mm

J

I

W

I

m

i

w

_m

w

i

w

W

I

m

I. Memory Allocation Benchmark Results

r

=

m.J

w.d

w

Item Size Item Count Ideal Size Actual Size Overhead Overhead/Item

8 100,0OO 800 K 2496 K 1696 K 16.96

16 100,000 1600 K 3312 K 1712 K 17.12

24 100,000 2400 K 4128 K 1728 K 17.28

32 100,000 3200 K 4808 K 1608 K 16.08

8 50,0O0 400 K 1408 K 1008 K 20.16

16 50,000 800 K 1816 K 1016 K 20.32

24 50,000 1200 K 2224 K 1024 K 20.48

32 50,000 1600 K 2496 K 896 K 17.92

18.29Average

Table I-l:

N/A N/A N/A N/A

Overhead of Dynamic Memory Allocation using new in Verdix Ada

=

w
Item Size Item Count Ideal Size Actual Size Overhead Overhead/Item

w

w

m
w

W

16

24

32

8

16

24

32

Average

100,000

100,000

100,OO0

loo,O00

50,000

50,000

50,000

50,000

N/A

800 K

1600K

24OO K

3200 K

4OO K

800 K

1200 K

1600 K

N/A

1600 K

2384 K

3160K

3944 K

816 K

1208K

1600K

1922K

N/A

8o0K

784K

760 K

744K

416 K

8.0

7.84

7.60

7.44

8.32

408K 8.16

400K 8.0

392K 7.84

N/A 7.9

w

Table I-2: Overhead of Dynamic Memory Allocation using malloc in Sun C

w

w

=_

W

w

II. C and Ada Programs for Memory Allocation Benchmark

#include <stdio.h>

main()

(

lnt i;

for(i=0; I<100000; i++) {

malloc(32);

}

getchar(); /* measure the process size a_ thls point */

i,m

g

m

e.

m

wlth TEXT IO;

procedure TEST NEW is

_ype ELEMENT is

record

FZELDt : INTEGER'. -- 4 byte

FIELD2 : INTEGER; -- 4 byte

FIELD3 : INTEGER; -- 4 by%e

FIELD4 : INTEGER; -- 4 byte

FIELDS : INTEGER; -- 4 byte

FIELD8 : INTEGER; -- 4 byte

FIELD7 : INTEGER; -- 4 byte

FIELD8 : INTEGER; -- 4 byte

end record;

type ELE_IENT_PTR Is access ELEMENT;
PTR : ELEMENT PTR;

CHAR : CHARACTER;

beglu

for I in 1..100000 loop
PTR := new ELEMENT;

end loop;

TEXT IO.GET(CHAR);

end;

-- measure the process slze at this point

B

mm

R

mm

g

mm

mm

mm

u

m

g

m

I

g

D

